

De igna ion: F2316 - 12 (Rea o ed 2022)

S anda d S eci ca ion fo Ai f ame Eme genc Pa ach e ¹

Thi and ad i i i ed i nde he ed de igna ion F2316; he n mbe immedia el follo ing he de igna ion indica e he ea of o iginal adop ion o, in he ca e of e i ion, he ea of la e i ion. A n mbe in pa en he e indica e he ea of la eapp o al. A i pe c ip ep ilon (s) indica e an edi o ial change ince he la e i ion o eapp o al.

1. Scope

- 1.1 Thi peci ca ion co e minim m e i emen fo he de ign, man faci e, and in alla ion of pa ach e fo ai f ame. Ai f ame eme genc pa ach e add e ed in hi peci ca ion efe o pa ach e em de igned, man facı ed, and in alled o eco e he ai f ame and i oco pan a a ı i able a e of de cen. Thi peci ca ion i no applicable o deep- all pa ach e, pin eco e pa ach e, dog e pa ach e, o o he ai f ame eme genc ae od namic decele a o no peci call in ended fo afel lo e ing he ai f ame and oco pan o he g o nd. The peci ca ion i applicable o he e pe of pa ach e if he a e an in eg al pa of an ai f ame eme genc pa ach e de igned o eco e he ai f ame and oco pan a a ı i able a e of de cen.
- 1.2 The all e a ed in SI i ni a e o be ega ded a anda d. The e ma be all e gi en in pa en he e ha a e ma hema ical con e ion o inch-po nd i ni . Val e in paen he e a e p o ided fo info ma ion onl and a e no con ide ed anda d.
- 1.2.1 No e ha i hin he a ia ion comm ni mi ed i ni a e app op ia e in acco dance i h In e na ional Ci il A ia ion O gani a ion (ICAO) ag eemen . While he ali e a ed in SI i ni a e ega ded a anda d, ce ain ali e i ch a ai peed in kno and ali i de in fee a e al o accep ed a anda d.
- 1.3 Airframe emergency parachute recovery systems have become an acceptable means of greatly reducing the likelihood of serious injury or death in an in-flight emergency. Even though they have saved hundreds of lives in many different types of conditions, inherent danger of failure, even if properly designed, manufactured and installed, remains due to the countless permutations of random variables (attitude, altitude, accelerations, airspeed, weight, geographic location, etc.) that may exist at time of usage. The combination of these variables may negatively influence the life saving function of these airframe emergency parachute systems. They are designed to

be a supplemental safety device and to be used at the discretion of the pilot when deemed to provide the best chance of survivability.

- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The e a e a en l no efe enced doa men in hi peci ca ion.

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 *ballistic device*, *n*—ma incl de ocke mo o , mo a , e plo i e p ojec ile, p ing, o o he o ed ene g de ice.
- 3.1.2 *completely opened parachute, n* he pa ach e ha eached i ma im m de ign dimen ion fo he ime.
- 3.1.3 parachute deployment, n—p oce of pa ach e ac i-a ion and in a ion.

4. Materials and Manufacture

- 4.1 *Materials*—Ma e ial i ed fo pa and a emblie, he fail e of hich co ld ad e el affec afe, m mee he follo ing condi ion:
- 4.1.1 Ma e ial hall be i i able and d able fo he in ended i e.
- 4.1.2 De ign al e (eng h) m be cho en o ha no call al pa i inde eng ha a e i l of ma e ial a ia-ion o load concen a ion, o bo h.
- 4.1.3 The effec of en i onmen al condi ion , ι ch a empe a_{ι} e and h midi , e pec ed in e ice m be aken in o acco n .

5. Reserved

5.1 Thi ec ion i being ι ed a a placeholde o main ain he p e io ec ion n mbe .

 $^{^{1}\,\}mbox{Thi}$ peci ca ion i ı nde he j i dic ion of ASTM Commi ee F37 on Ligh Spo Ai c af and i he di ec e pon ibili of S bcommi ee F37.70 on C o G ing.

G en edi ion app o ed Ap il 1, 2022. R bli hed Ap il 2022. O iginall app o ed in 2003. La p e io edi ion app o ed in 2014 a F2316. 12 (2014). DOI: 10.1520/F2316-12R22.

6. Parachute System Design Requirements

- 6.1 Strength Requirements:
- 6.1.1 S eng h e i i emen a e peci ed in e m of limi load (he ma im m load o be e pec ed in e ice) and i l ima e load (limi load m l iplied b a p e c ibed fac o of afe).
- 6.1.1.1 Unle o he i e p o ided, p e c ibed load a e limi load.
- 6.1.1.2 Unle o he i e p o ided, an ı l ima e load fac o of afe of 1.5 m be ı ed.
- 6.1.2 S em e al a ion b anal i m ı e an accep ed comp a ional me hod ha ha been e i ed h a gh e ing. In o he ca e , load e ing m be cond c ed.
- 6.1.3 S em e al a ion b e ing m be i ppo ed i h in i men calib a ion e i ed b an applicable eigh and mea i e eg la o bod, fo e ample, a e and fede al go e nmen .
 - 6.2 System Design—The follo ing minim m pe fo mance anda d fo he ba ic pa ach e em hall be me.
- 6.2.1 Parachute Strength Test—A minim m of h ee i cce fild op e of he pa ach e a embl hall be condiced nde i lima e load condition of demon a e he pa ach e' engh. The maim m pa ach e opening force meai ed in he hee e ill be heil ima e pa ach e opening load. A ne pa ach e a embl ma bei ed foreach e. The eigh of he pa ach e a embl i inclided in he e eigh. Da a aci i i ion hall be pe formed foreach e and hall inclide eco ding of in a ion load a a finction of ime.
- 6.2.1.1 Fo a coe fild op e he pa ach e em m be able o ppo he lima e load demon a ed ding he d op e. No de imen al pe manen defo ma ion o damage ma oco ha pe en he em f om e ing i p po e. The pa ach e hall:
- (1) Main ain a de cen a e a o belo i de igned a e of de cen fo a gi en eigh and al i de.
- (2) Ha e comple el opened i hin i de igned pa ame e of ime.
- 6.2.1.2 An lima e load fac o of afe of 1.5 i achie ed b cond c ing he pa ach e enghe a follo:
- (1) Parachute Strength Test with Aircraft in Flight. If he pa ach e i eng h e ed hile a ached o an ai c af in igh, he follo ing e pa ame e hall be applied:

Min. Te eigh = 1.25 Ai c af Ma im m G o Takeoff Weigh

Min. Te Speed = 1.1 Ai caf' Ma im m In ended Pa ach e Deplo men Speed

Note 1. In hi e a ian, he fac o of afe i con ide ed applicable o he ene g of he ai c af. Ho e e, i i no pe mi ible o cale e e l b i ing an ene g e i a ion app oach.

(2) Parachute Strength Test with "Dead Weight" Payload. If he pa ach e i eng h e ed hile a ached o a dead eigh (den e ma and, me al chain, a e, e c. and limi ed ol me), he follo ing e pa ame e hall be applied:

Min. Te eigh = Ai c af Ma im m G o Takeoff Weigh Min. Te Speed = Ai caf ' Ma im m In ended Pa ach e Deplo men Speed

Note 2. This e me hod is bonas e con e a ise, a a dead eigh

- 6.2.2 Rate of Descent—Rae of de cen da a hall be eco ded fo all e in 6.2.1. Thi da a ma be co ec ed fo he a ia ion in e ehicle eigh o de e mine he a e of de cen a he go eigh of he peci c ai c af. De cen a e da a f om pa ach e canopie hall be co ec ed o 1500 m (5000 f) den i al i de and andad empeare. Ai c af man facre and pa ach e man facre hall coo dinae ha e io injo o oco pan i nlikel hile landing nde pa ach e.
- 6.2.3 Staged Deployment—The pa ach e a embl hall be de igned o age he deplo men e ι ence in an o de l manne o ed ce he chance of en anglemen o imila mal $\mathfrak l$ nc ion .
- 6.2.4 Environmental Conditions—The em m be e al a ed fo ope a ion in empe aı e condi ion of 40 C o 48.9 C (40 F o 120 F).
- 6.3 Installation Design—A peci c Pa ach e In alla ion Man al (PIM) fo he in alla ion of a pa io la pa ach e em in o each ai c af model m be c ea ed. The PIM m p o ide i fficien info ma ion o en i e co ec in alla ion of he pa ach e em o he peci c ai f ame.
- 6.3.1 Coordination—Ai f ame and pa ach e man facı e m coo dina e and join l app o e he PIM fo co ec ne . De ign o con g a ion change ha impac he pa ach e in alla ion, pe fo mance, o ope abili eıie e-e al a ion elaie o he eıiemen of hi pecica ion. Bo hai f ame and pa ach e man facı e hall coo dina e he e an icipa ed change befo e implemen a ion. The e change hall be doomen ed in a e i ed PIM.
- 6.3.2 Weight and Balance—The in alla ion of he pa ach e em m be accon ed fo in he de ign da a of eigh and balance limi of he aif ame.
- 6.3.3 System Mounting—The had a e i ed o in all he pa ach e em hall no become loo ened o de ached a a e i l of no mal ea and ea.
- 6.3.4 Extraction Performance—Ai f ame and pa ach e man facı e m coo dina e and ho ha he e ac ion de ice ill cleanl pene a e an co e ing o emo e he pa ach e em' co e, if an, and e ac he pa ach e a embl o fill pen ion line e ch (line ha connec he pa ach e canop o he ha ne e) i ho inhibi ing o damaging he pa ach e pon eg e. While i i ecogni ed ha he ai c af con g a ion i i np edic able in an eme genc i a ion (fo e ample, b oken pa c ea ing deb i), all d e ca e m be aken o p o ide a pa h of lea e i ance a i ming an e emel apid a e of depa i e.
- 6.3.5 Parachute Attachment to the Airframe—The pa ach e a embl m be a ached o he p ima l c l e of he ai f ame i h an ai f ame a achmen ha ne ha ma be compo ed of a ingle ha ne ec ion o a e ie of ha ne ec ion. The ai f ame and pa ach e man fac l e m coo dina e and ag ee o en l e ha he pa ach e a achmen o he l bjec ai f ame complie i h he follo ing condi ion:
- 6.3.5.1 Pa ach e deplo men ind ce ini e load di ibion o he ai f ame, la gel de o geome ic loca ion of he ha ne a achmen poin. The ai f ame a achmen poin and

ai f ame a achmen ha ne fo each indi id al ai c af model m compl i h he l ima e pa ach e opening load mealed in he pa ach e engh e de c ibed in 6.2.1. Thi load al ead con ain he e l i ed afe fac o of 1.5.

6.3.5.2 The ha ne em and a ach poin m be con g ed in a manne ha peen he aic af in a de cen and landing a i de ha ma imi e he abili of he aif ame cen e o ab o b he an icipa ed landing load and minimi e he p obabili of inj o he oco pan.

6.3.5.3 The aif ame a achmen hane m be α ed f om he in alled pa ach e o he aif ame a achmen poin and e α ed in a manne ha ill pe en i f om impacing no mal igh ope a ion . I m al o be ho n ha he hane ill be ifficien l ipped f ee af e ac i a ion of he pa ach e em o en e ade a e fanc ioning of he em.

6.3.5.4 The aif ame a achmen hane de ign m minimi e he po en ial fo con ic i h he p opelle. If con ic i h he p opelle i ı na oidable b in alla ion de ign o ope a o in ı c ion ı ch a h ing do n he engine, he aif ame a achmen hane m be man facı ed f om mae ial ha ield a ea onable likelihood of ı i ing a con ic i h he p opelle.

6.3.6 Activating Housing Routing—The pa ach e em m be 6.4(do-235.8(6.2354(doei. e ial)-269(no6.3.5.)-46.5i)-269i f)64.8(f)60(ii l f)64.8 .)-3179(The)doei. eai f ame afach eand

bjeic ai f ame compien i h he codic ion:.

 $6.362 \text{df The } 718.4 (\text{ em}) (718.4 (\text{haill}) (718.4 \text{no l}) (718.4 \text{c (e be)} \text{T-}0.95\text{-}1.5699 \text{TD(fic)} - 26954 (6.4 (\text{poin}\)54 (6.4354 (54 (6.436 \text{ h54} (54 (6.436 \text$

be A(compi h ed)-35496(if)-352.9(f)-352.9(manne)-352.9(mken)-35496(iad e men)-35496deplo a-

emel imp obablm.

6.36554 o hhe 716.4 em716.4mm

imlehmen ed h eh he aic (aff)-332.9(n)-332.9no l e clm.

6.376

fo ped (ih)-421.1(he)-421 plælamh e

ih em ha ill

hosco paramed

pa ach e

em b6.4(do-23560.25(if)560.25(A(c dancbe)560.25(i h)-60.25(e)560.25 ele ainh)TTaai f ame)6. if o hef pa ach e opn in,e 6.cmen and pa ach ean in.e

AIM

- 11.2.1 Installation and Size of Placard or Label—The aif ame man facı e hall pe manen l in all he a ning placa d o label in a manne de ned b hi peci ca ion and dog men ed in he PIM.
- 11.2.2 Label Size and Color—All placa do label hall follo he colo a ion me hod de c ibed belo. The hee i e of placa do label ill add e diffe en loca ion fo in alla ion.
- 11.2.2.1 *Danger Placard*—Dange placa do label hall be pin edi ha ed bo dei hhi e (o e e e pe) le e i ha de cipi e gaphic elemen.
- (1) Danger Placard for Interior Parachute Installation—A 7.62 cm (3 in.) minim m iang la placa do label i h he o d. Dange (ee ample placa d Fig. X1.1 of Appendi X1) m be placed adjacen o he pa ach e eg e poin fo enclo ed ai c af he e he pa ach e em ma no be i ible f om he e e io.
- (2) Danger Placard for Exterior Parachute Installation—A 5.08 cm (2 in.) minim m iang la placa d o label (ee ample label Fig. X1.1

F2316 12 (2022)

S3.1.1 The eme genc pa ach e em man facı e hall e abli h in pec ion and e nece a o enı e ha each a icle p od ced confo m o he o iginal enginee ing peci ca ion, a de ned belo:

S3.1.1.1 In pec ion fo a mae ial, p chaed i em, and pa and a emblie p od ced b pplie, including me hod red o en reaccep able rali of pa and a emblie ha canno be compleel in peced fo confo mi and rali hen deli e ed o he pa ach e man facre 'facili.

S3.1.1.2 Pod c ion in pec ion of indi id al pa and comple e a emblie, incl ding he iden i ca ion of an pecial man facı ing p oce e in ol ed, he mean ı ed o con ol

he p oce e, and he nal e ı ali in pec ion of he comple ed eme genc pa ach e em.

S3.1.1.3 A nonconfo ming ma e ial e ie em ha incl de doa men a ion of pa di po i ion deci ion and a em o di po e of ejec ed pa .

S3.1.1.4 A em fo info ming compan in pec o of a en change in enginee ing d a ing , peci ca ion , and , ali con ol p oced e .

APPENDIX

(Nonmandatory Information)

X1. SAMPLE OF LABELS (PLACARDS)

X1.1 The ample label ho n in Fig. X1.1 mee he e i i emen p o ided in 11.2.2.1.

X1.2 The ample label ho n in Fig. X1.2 mee he e i emen p o ided in 11.2.2.2.

X1.3 The ample label ho n in Fig. X1.3 mee he e i emen p o ided in 11.2.2.3.

FIG. X1.2 Sam le Iden if ing Label

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/